$V = 3203.03 (12) \text{ Å}^3$ 

 $0.57 \times 0.38 \times 0.03 \text{ mm}$ 

27104 measured reflections

4673 independent reflections

3649 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation  $\mu = 0.09 \text{ mm}^{-1}$ 

Z = 8

T = 100 K

 $R_{\rm int}=0.042$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# N-(1-Naphthyl)-10H-9-oxa-1,3-diazaanthracen-4-amine

# Hoong-Kun Fun,<sup>a</sup>\* Suchada Chantrapromma,<sup>b</sup>‡ Sankappa Rai,<sup>c</sup> Prakash Shetty<sup>d</sup> and Arun M. Isloor<sup>e</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, <sup>b</sup>Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, <sup>c</sup>Syngene International Ltd, Biocon Park, Plot Nos. 2 and 3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, <sup>d</sup>Department of Printing, Manipal Institute of Technology, Manipal 576 104, India, and <sup>e</sup>Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.my

Received 4 February 2009; accepted 9 February 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.142; data-to-parameter ratio = 20.3.

In the molecule of the title compound,  $C_{21}H_{15}N_3O$ , the 10*H*-9oxa-1,3-diazaanthracene ring system is slightly bent, with dihedral angles of 3.99 (6) and 4.80 (6) $^{\circ}$  between the pyran ring and the pyrimidine and benzene rings, respectively. This ring system makes a dihedral angle of  $85.23(3)^{\circ}$  with the naphthalene plane. In the crystal packing, molecules are linked by N-H···N hydrogen bonds into chains along the aaxis and these chains are stacked along the b axis. The crystal is further stabilized by weak  $C-H\cdots N$  and  $C-H\cdots \pi$ interactions.

### **Related literature**

For values of bond lengths, see Allen et al. (1987). For background to the bioactivity and applications of naphthyrimidines, see, for example: Bedard et al. (2000); Bohme & Haake (1976); Erian (1993); Falardeau et al. (2000); Martinez & Marco (1997); Tandon et al. (1991); Taylor & McKillop (1970). For the stability of the temperature controller, see Cosier & Glazer (1986).



‡ Additional correspondence author, e-mail: suchada.c@psu.ac.th.

# **Experimental**

#### Crystal data

| C <sub>21</sub> H <sub>15</sub> N <sub>3</sub> O |  |
|--------------------------------------------------|--|
| $M_r = 325.36$                                   |  |
| Orthorhombic, Pbca                               |  |
| a = 13.2762 (3) Å                                |  |
| b = 8.8700 (2)  Å                                |  |
| c = 27.1997 (5) Å                                |  |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.901, \ T_{\max} = 0.997$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.045$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.142$               | independent and constrained                                |
| S = 1.08                        | refinement                                                 |
| 4673 reflections                | $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 230 parameters                  | $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C3/C11/N1/N2 and C4-C9 rings, respectively.

| $D - H \cdots A$                                  | D-H        | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------|------------|--------------|--------------|--------------------------------------|
| $N3 - H1N3 \cdots N2^{i}$                         | 0.913 (16) | 2.143 (16)   | 2.9722 (13)  | 150.6 (14)                           |
| $C13 - H13A \cdots N2^{ii}$                       | 0.93       | 2.62         | 3.4791 (16)  | 154                                  |
| $C20 - H20A \cdots N3$                            | 0.93       | 2.60         | 2.9077 (15)  | 100                                  |
| $C20 - H20A \cdots N1^{iii}$                      | 0.93       | 2.48         | 3.3232 (17)  | 150                                  |
| $C10 - H10A \cdots Cg1^{iii}$                     | 0.93       | 2.76         | 3.5855 (14)  | 143                                  |
| $C10-H10B\cdots Cg2^{n}$ $C13-H13A\cdots Cg1^{n}$ | 0.97       | 2.96         | 3.6792(14)   | 132                                  |
|                                                   | 0.93       | 2.63         | 3.3503(14)   | 135                                  |

Symmetry codes: (i)  $x + \frac{1}{2}$ ,  $y, -z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z; (iii)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

AMI is grateful to the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Ltd, Bangalore, India, for allocation of research resources. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose Grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2571).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bedard, J., May, S., Heureux, L., Stamminger, T., Copsey, A., Drach, J., Huffman, J., Chan, L., Jin, H. & Rando, R. F. (2000). Antimicrob. Agents Chemother. 44, 929-932.
- Bohme, H. & Haake, M. (1976). Advances in Organic Chemistry, edited by E. C. Taylor, p. 107. New York: John Wiley and Sons.

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Erian, A. W. (1993). Chem. Rev. 93, 1991–2005.
- Falardeau, G., Chan, L., Stefanac, T., May, S., Jin, H. & Lavallee, J. F. (2000). Bioorg. Med. Chem. Lett. 18, 2769–2770.
- Martinez, A. G. & Marco, L. J. (1997). Bioorg. Med. Chem. Lett. 24, 3165-3170.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tandon, V. K., Vaish, M., Jain, S., Bhakuni, D. S. & Srimal, R. C. (1991). Indian J. Pharm. Sci. 53, 22–23.
- Taylor, E. C. & McKillop, A. (1970). The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles, p. 415. New York: Interscience.

Acta Cryst. (2009). E65, o523-o524 [doi:10.1107/S1600536809004693]

# N-(1-Naphthyl)-10H-9-oxa-1,3-diazaanthracen-4-amine

### H.-K. Fun, S. Chantrapromma, S. Rai, P. Shetty and A. M. Isloor

#### Comment

Condensed heterocyclic systems are of considerable interest not only because of their potential biological activity but also because of their versatility as synthons in organic transformations (Bohme & Haake, 1976; Taylor & McKillop, 1970; Erian, 1993). A series of 1,6-naphthyrimidines have been demonstrated to possess antihuman cytomegalovirus (HCMV) activity (Falardeau *et al.*, 2000; Bedard *et al.*, 2000). Furthermore, chromenes and their fused heterocyclic derivatives have attracted a great deal of interest due to their wide applications in the field of pharmaceuticals (Martinez & Marco, 1997; Tandon *et al.*, 1991). In view of these observations, we have synthesized title compound which is a new chromenopyrimidine molecule and its crystal structure was reported here.

In the structure of the title compound (I) (Fig. 1), the 10*H*-9-oxa-1,3-diaza-anthracene ring system is slightly bent as indicated by the dihedral angles between the central ring and the two side rings being 3.99 (6)° (for the C1–C3/C11/N1–N2 ring) and 4.80 (6)° (for the C4–C9 ring). The naphthalene ring system is planar with the largest deviation 0.027 (1) Å for atom C9. The 10*H*-9-oxa-1,3-diaza-anthracene ring is almost perpendicular with the naphthalene ring as shown by the dihedral angle between these two ring systems being 83.00 (15)°. The naphthalene–amine moiety (N3/C12–C21) is in (+)-*syn*-clinal with respect to the C1–C3/C11/N1–N2 ring with a torsion angle C1–N3–C12–C21 = 83.00 (15)°. The bond distances have normal values (Allen *et al.*, 1987).

In the crystal packing, N—H···N hydrogen bonds (Table 1, Fig. 2) link the molecules into chains along the *a* axis and these molecular chains are stacked along the *b* axis. The crystal is further stabilized by weak C—H···N and C—H··· $\pi$  interactions; *Cg*1 and *Cg*2 are the centroids of C1–C3/C11/N1–N2 and C4–C9 rings, respectively (Table 1).

### **Experimental**

The title compound was obtained by vigorously stirring a solution of 2-amino-4*H*-chromene-3-carbonitrile 0.5 g (2.8 mmol) in 10 ml of dimethyl formamide dimethylacetal which has been heated to reflux for 2 h. Excess dimethyl formamide dimethyl acetal was removed and the residue obtained was dissolved in acetic acid (10 ml). Amine 0.41 g (2.8 mmol) was then added and heated to reflux for an additional 2 h. The reaction mixture was concentrated and finally the residue was purified by column chromatography using petroleum ether–ethyl acetate (60:40 v/v) to get desired compound as a crystalline solid 0.59 g (Yield 63%, m.p. 513–515 K).

#### Refinement

The amine H atom was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C-H) = 0.93 Å,  $U_{iso} = 1.2U_{eq}(C)$  for aromatic and 0.97 Å,  $U_{iso} = 1.2U_{eq}(C)$  for CH<sub>2</sub>. The highest residual electron density peak is located at 0.58 Å from C18 and the deepest hole is located at 0.69 Å from C3.

# Figures



Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atomnumbering scheme.



# *N*-(1-Naphthyl)-10*H*-9-oxa-1,3-diazaanthracen-4-amine

### Crystal data

| $C_{21}H_{15}N_{3}O$           | $D_{\rm x} = 1.349 {\rm ~Mg~m}^{-3}$         |
|--------------------------------|----------------------------------------------|
| $M_r = 325.36$                 | Melting point = 513–515 K                    |
| Orthorhombic, Pbca             | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab        | Cell parameters from 4673 reflections        |
| a = 13.2762 (3) Å              | $\theta = 1.5 - 30.0^{\circ}$                |
| b = 8.8700 (2)  Å              | $\mu = 0.09 \text{ mm}^{-1}$                 |
| c = 27.1997 (5) Å              | T = 100  K                                   |
| $V = 3203.03 (12) \text{ Å}^3$ | Plate, colourless                            |
| Z = 8                          | $0.57 \times 0.38 \times 0.03 \text{ mm}$    |
| $F_{000} = 1360$               |                                              |

### Data collection

| Bruker SMART APEXII CCD area-detector diffractometer        | 4673 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 3649 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.042$                  |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>           | $\theta_{\text{max}} = 30.0^{\circ}$   |
| T = 100  K                                                  | $\theta_{\min} = 1.5^{\circ}$          |
| ω scans                                                     | $h = -18 \rightarrow 18$               |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $k = -12 \rightarrow 12$               |
| $T_{\min} = 0.901, \ T_{\max} = 0.997$                      | $l = -37 \rightarrow 38$               |
| 27104 measured reflections                                  |                                        |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                        | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.142$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0844P)^2 + 0.3525P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.08                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 4673 reflections                                       | $\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$                               |
| 230 parameters                                         | $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

methods Primary atom site location: structure-invariant direct Extinction correction: none

### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ           | Uiso*/Ueq  |
|------|--------------|--------------|-------------|------------|
| 01   | 0.08414 (6)  | 0.31457 (10) | 0.18202 (3) | 0.0193 (2) |
| N1   | 0.18466 (7)  | 0.51429 (12) | 0.30718 (4) | 0.0183 (2) |
| N2   | 0.05453 (7)  | 0.44680 (12) | 0.25056 (3) | 0.0180 (2) |
| N3   | 0.35056 (7)  | 0.44664 (13) | 0.29448 (3) | 0.0182 (2) |
| H1N3 | 0.4016 (12)  | 0.4226 (19)  | 0.2734 (6)  | 0.034 (4)* |
| C1   | 0.25345 (8)  | 0.44337 (14) | 0.27880 (4) | 0.0156 (2) |
| C2   | 0.09044 (9)  | 0.51210 (15) | 0.29118 (4) | 0.0184 (2) |
| H2A  | 0.0435       | 0.5622       | 0.3106      | 0.022*     |
| C3   | 0.12498 (8)  | 0.37767 (14) | 0.22322 (4) | 0.0163 (2) |
| C4   | 0.14513 (9)  | 0.22381 (14) | 0.15270 (4) | 0.0174 (2) |
| C5   | 0.09574 (9)  | 0.15384 (16) | 0.11364 (4) | 0.0220 (3) |
| H5A  | 0.0277       | 0.1716       | 0.1081      | 0.026*     |
| C6   | 0.14946 (10) | 0.05735 (16) | 0.08316 (4) | 0.0245 (3) |
| H6A  | 0.1175       | 0.0100       | 0.0569      | 0.029*     |
| C7   | 0.25153 (10) | 0.03159 (16) | 0.09199 (4) | 0.0234 (3) |

| H7A  | 0.2873       | -0.0352      | 0.0723      | 0.028*     |
|------|--------------|--------------|-------------|------------|
| C8   | 0.29956 (9)  | 0.10591 (15) | 0.13028 (4) | 0.0202 (3) |
| H8A  | 0.3679       | 0.0893       | 0.1355      | 0.024*     |
| C9   | 0.24765 (8)  | 0.20522 (14) | 0.16123 (4) | 0.0169 (2) |
| C10  | 0.30044 (8)  | 0.29292 (15) | 0.20116 (4) | 0.0178 (2) |
| H10A | 0.3420       | 0.2249       | 0.2204      | 0.021*     |
| H10B | 0.3442       | 0.3677       | 0.1863      | 0.021*     |
| C11  | 0.22622 (8)  | 0.37036 (14) | 0.23449 (4) | 0.0156 (2) |
| C12  | 0.37886 (8)  | 0.52034 (15) | 0.33935 (4) | 0.0175 (2) |
| C13  | 0.41910 (9)  | 0.66208 (16) | 0.33759 (4) | 0.0218 (3) |
| H13A | 0.4274       | 0.7097       | 0.3074      | 0.026*     |
| C14  | 0.44831 (10) | 0.73748 (16) | 0.38139 (5) | 0.0247 (3) |
| H14A | 0.4748       | 0.8344       | 0.3798      | 0.030*     |
| C15  | 0.43757 (9)  | 0.66800 (16) | 0.42576 (5) | 0.0240 (3) |
| H15A | 0.4560       | 0.7185       | 0.4543      | 0.029*     |
| C16  | 0.39841 (9)  | 0.51891 (16) | 0.42882 (4) | 0.0210 (3) |
| C17  | 0.38629 (10) | 0.44401 (18) | 0.47457 (4) | 0.0273 (3) |
| H17A | 0.4035       | 0.4937       | 0.5035      | 0.033*     |
| C18  | 0.34979 (10) | 0.30001 (19) | 0.47687 (5) | 0.0310 (3) |
| H18A | 0.3425       | 0.2527       | 0.5072      | 0.037*     |
| C19  | 0.32313 (10) | 0.22321 (18) | 0.43346 (5) | 0.0272 (3) |
| H19A | 0.3001       | 0.1243       | 0.4352      | 0.033*     |
| C20  | 0.33080 (9)  | 0.29311 (16) | 0.38844 (4) | 0.0215 (3) |
| H20A | 0.3113       | 0.2422       | 0.3601      | 0.026*     |
| C21  | 0.36831 (8)  | 0.44257 (15) | 0.38505 (4) | 0.0179 (2) |
|      |              |              |             |            |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| 01  | 0.0145 (4) | 0.0257 (5) | 0.0178 (4) | 0.0017 (3)  | -0.0020 (3) | -0.0046 (3) |
| N1  | 0.0160 (5) | 0.0215 (5) | 0.0175 (4) | 0.0021 (4)  | 0.0008 (3)  | -0.0018 (4) |
| N2  | 0.0145 (4) | 0.0211 (5) | 0.0183 (4) | 0.0019 (4)  | -0.0010 (3) | 0.0001 (4)  |
| N3  | 0.0128 (4) | 0.0267 (6) | 0.0152 (4) | 0.0008 (4)  | -0.0012 (3) | -0.0035 (4) |
| C1  | 0.0141 (5) | 0.0170 (6) | 0.0156 (4) | 0.0002 (4)  | -0.0003 (4) | 0.0016 (4)  |
| C2  | 0.0163 (5) | 0.0212 (6) | 0.0178 (5) | 0.0019 (5)  | 0.0020 (4)  | -0.0005 (4) |
| C3  | 0.0167 (5) | 0.0181 (6) | 0.0141 (4) | 0.0002 (5)  | -0.0002 (4) | 0.0009 (4)  |
| C4  | 0.0174 (5) | 0.0189 (6) | 0.0158 (5) | -0.0008 (5) | 0.0009 (4)  | 0.0005 (4)  |
| C5  | 0.0202 (6) | 0.0272 (7) | 0.0186 (5) | -0.0035 (5) | -0.0012 (4) | 0.0005 (5)  |
| C6  | 0.0279 (6) | 0.0277 (7) | 0.0178 (5) | -0.0051 (5) | -0.0005 (4) | -0.0030 (5) |
| C7  | 0.0279 (6) | 0.0238 (7) | 0.0185 (5) | -0.0003 (5) | 0.0052 (5)  | -0.0019 (5) |
| C8  | 0.0205 (5) | 0.0217 (6) | 0.0182 (5) | 0.0016 (5)  | 0.0033 (4)  | 0.0015 (5)  |
| C9  | 0.0183 (5) | 0.0177 (6) | 0.0148 (4) | -0.0004 (4) | 0.0011 (4)  | 0.0009 (4)  |
| C10 | 0.0138 (5) | 0.0225 (6) | 0.0171 (5) | 0.0012 (4)  | 0.0001 (4)  | -0.0019 (4) |
| C11 | 0.0152 (5) | 0.0173 (6) | 0.0144 (4) | 0.0008 (4)  | -0.0001 (4) | 0.0006 (4)  |
| C12 | 0.0131 (5) | 0.0227 (6) | 0.0167 (5) | 0.0023 (4)  | -0.0006 (4) | -0.0028 (4) |
| C13 | 0.0198 (6) | 0.0243 (7) | 0.0213 (5) | 0.0001 (5)  | -0.0028 (4) | 0.0021 (5)  |
| C14 | 0.0228 (6) | 0.0215 (6) | 0.0297 (6) | -0.0039 (5) | -0.0053 (5) | -0.0025 (5) |
| C15 | 0.0211 (6) | 0.0282 (7) | 0.0227 (5) | -0.0001 (5) | -0.0047 (4) | -0.0069 (5) |

| C16             | 0.0160 (5)    | 0.0288 (7)  | 0.0183 (5) | 0.0003 (5)   | -0.0015 (4) | -0.0033 (5) |
|-----------------|---------------|-------------|------------|--------------|-------------|-------------|
| C17             | 0.0223 (6)    | 0.0427 (9)  | 0.0169 (5) | -0.0020 (6)  | -0.0022 (4) | -0.0014 (5) |
| C18             | 0.0262 (6)    | 0.0453 (9)  | 0.0214 (6) | -0.0048 (6)  | -0.0008(5)  | 0.0080 (6)  |
| C19             | 0.0220 (6)    | 0.0311 (8)  | 0.0285 (6) | -0.0060 (6)  | -0.0003 (5) | 0.0049 (6)  |
| C20             | 0.0173 (5)    | 0.0252 (7)  | 0.0218 (5) | -0.0017 (5)  | -0.0003 (4) | -0.0016 (5) |
| C21             | 0.0128 (5)    | 0.0233 (6)  | 0.0176 (5) | 0.0019 (5)   | -0.0007 (4) | -0.0026 (5) |
|                 |               |             |            |              |             |             |
| Geometric paran | neters (Å, °) |             |            |              |             |             |
| O1—C3           |               | 1.3649 (13) | C          | 9—C10        | 1.5         | 085 (16)    |
| O1—C4           |               | 1.3927 (14) | С          | 10—C11       | 1.5         | 050 (15)    |
| N1—C2           |               | 1.3245 (15) | C          | 10—H10A      | 0.9         | 700         |
| N1-C1           |               | 1.3511 (14) | С          | 10—H10B      | 0.9         | 700         |
| N2—C2           |               | 1.3355 (15) | C          | 12—C13       | 1.3         | 669 (19)    |
| N2—C3           |               | 1.3432 (15) | C          | 12—C21       | 1.4         | 287 (16)    |
| N3—C1           |               | 1.3582 (14) | C          | 13—C14       | 1.4         | 202 (17)    |
| N3—C12          |               | 1.4345 (14) | C          | 13—H13A      | 0.9         | 300         |
| N3—H1N3         |               | 0.913 (17)  | C          | 14—C15       | 1.3         | 626 (18)    |
| C1—C11          |               | 1.4151 (15) | C          | 14—H14A      | 0.9         | 300         |
| C2—H2A          |               | 0.9300      | C          | 15—C16       | 1.4         | 234 (19)    |
| C3—C11          |               | 1.3800 (15) | C          | 15—H15A      | 0.9         | 300         |
| С4—С9           |               | 1.3905 (16) | C          | 16—C17       | 1.4         | 198 (17)    |
| C4—C5           |               | 1.3943 (16) | C          | 16—C21       | 1.4         | 266 (16)    |
| C5—C6           |               | 1.3886 (18) | C          | 17—C18       | 1.3         | 68 (2)      |
| C5—H5A          |               | 0.9300      | C          | 17—H17A      | 0.9         | 300         |
| С6—С7           |               | 1.3951 (19) | C          | 18—C19       | 1.4         | 082 (19)    |
| С6—Н6А          |               | 0.9300      | С          | 18—H18A      | 0.9         | 300         |
| С7—С8           |               | 1.3878 (17) | C          | 19—C20       | 1.3         | 764 (17)    |
| C7—H7A          |               | 0.9300      | C          | 19—H19A      | 0.9         | 300         |
| С8—С9           |               | 1.3999 (16) | C20—C21    |              | 1.4         | 191 (19)    |
| C8—H8A          |               | 0.9300      | C          | 20—H20A      | 0.9300      |             |
| C3—O1—C4        |               | 118.43 (9)  | С          | 11—C10—H10B  | 109         | 9.3         |
| C2—N1—C1        |               | 116.35 (10) | C          | 9—С10—Н10В   | 109         | 9.3         |
| C2—N2—C3        |               | 114.05 (10) | Н          | 10A—C10—H10B | 108         | 3.0         |
| C1—N3—C12       |               | 121.70 (10) | C.         | 3—C11—C1     | 114         | 4.62 (10)   |
| C1—N3—H1N3      |               | 120.1 (10)  | C          | 3—C11—C10    | 12          | 1.68 (10)   |
| C12—N3—H1N3     |               | 116.5 (10)  | C          | 1—C11—C10    | 123         | 3.68 (10)   |
| N1—C1—N3        |               | 116.89 (10) | C          | 13—C12—C21   | 120         | 0.85 (11)   |
| N1-C1-C11       |               | 121.79 (10) | C          | 13—C12—N3    | 119         | 9.46 (11)   |
| N3—C1—C11       |               | 121.31 (10) | C          | 21—C12—N3    | 119         | 9.64 (11)   |
| N1—C2—N2        |               | 127.97 (11) | C          | 12—C13—C14   | 120         | 0.70 (11)   |
| N1—C2—H2A       |               | 116.0       | C          | 12—C13—H13A  | 119         | 9.6         |
| N2—C2—H2A       |               | 116.0       | C          | 14—C13—H13A  | 119         | 9.6         |
| N2—C3—O1        |               | 111.42 (9)  | C          | 15—C14—C13   | 120         | 0.09 (12)   |
| N2—C3—C11       |               | 125.21 (10) | С          | 15—C14—H14A  | 120         | 0.0         |
| O1—C3—C11       |               | 123.37 (10) | C          | 13—C14—H14A  | 120         | 0.0         |
| C9—C4—O1        |               | 122.82 (10) | C          | 14—C15—C16   | 120         | 0.68 (11)   |
| C9—C4—C5        |               | 122.33 (11) | C          | 14—C15—H15A  | 119         | 9.7         |
| O1—C4—C5        |               | 114.85 (10) | C          | 16—C15—H15A  | 119         | 9.7         |

| C6—C5—C4      | 119.18 (11)  | C17—C16—C15     | 121.83 (11)  |
|---------------|--------------|-----------------|--------------|
| С6—С5—Н5А     | 120.4        | C17—C16—C21     | 118.52 (12)  |
| С4—С5—Н5А     | 120.4        | C15—C16—C21     | 119.64 (11)  |
| C5—C6—C7      | 119.81 (11)  | C18—C17—C16     | 121.15 (12)  |
| С5—С6—Н6А     | 120.1        | С18—С17—Н17А    | 119.4        |
| С7—С6—Н6А     | 120.1        | C16—C17—H17A    | 119.4        |
| C8—C7—C6      | 119.84 (12)  | C17—C18—C19     | 120.17 (12)  |
| С8—С7—Н7А     | 120.1        | C17—C18—H18A    | 119.9        |
| С6—С7—Н7А     | 120.1        | C19—C18—H18A    | 119.9        |
| C7—C8—C9      | 121.60 (11)  | C20-C19-C18     | 120.62 (14)  |
| С7—С8—Н8А     | 119.2        | С20—С19—Н19А    | 119.7        |
| С9—С8—Н8А     | 119.2        | С18—С19—Н19А    | 119.7        |
| C4—C9—C8      | 117.14 (10)  | C19—C20—C21     | 120.30 (12)  |
| C4—C9—C10     | 120.92 (10)  | C19—C20—H20A    | 119.8        |
| C8—C9—C10     | 121.91 (10)  | C21—C20—H20A    | 119.8        |
| С11—С10—С9    | 111.40 (9)   | C20—C21—C16     | 119.18 (11)  |
| C11—C10—H10A  | 109.3        | C20-C21-C12     | 122.82 (11)  |
| С9—С10—Н10А   | 109.3        | C16—C21—C12     | 118.00 (11)  |
| C2—N1—C1—N3   | 179.12 (11)  | N1—C1—C11—C3    | -0.19 (17)   |
| C2—N1—C1—C11  | -0.19 (17)   | N3—C1—C11—C3    | -179.46 (11) |
| C12—N3—C1—N1  | 0.71 (17)    | N1-C1-C11-C10   | 178.62 (11)  |
| C12—N3—C1—C11 | -179.98 (11) | N3-C1-C11-C10   | -0.66 (18)   |
| C1—N1—C2—N2   | 0.81 (19)    | C9—C10—C11—C3   | -10.17 (16)  |
| C3—N2—C2—N1   | -0.92 (19)   | C9—C10—C11—C1   | 171.11 (11)  |
| C2—N2—C3—O1   | -179.33 (10) | C1—N3—C12—C13   | -99.41 (14)  |
| C2—N2—C3—C11  | 0.44 (18)    | C1—N3—C12—C21   | 83.00 (15)   |
| C4—O1—C3—N2   | -172.67 (10) | C21—C12—C13—C14 | -2.11 (18)   |
| C4—O1—C3—C11  | 7.55 (17)    | N3—C12—C13—C14  | -179.66 (11) |
| C3—O1—C4—C9   | -5.68 (16)   | C12—C13—C14—C15 | 0.8 (2)      |
| C3—O1—C4—C5   | 174.98 (11)  | C13—C14—C15—C16 | 0.9 (2)      |
| C9—C4—C5—C6   | 2.60 (19)    | C14—C15—C16—C17 | -179.90 (12) |
| O1—C4—C5—C6   | -178.05 (11) | C14—C15—C16—C21 | -1.21 (18)   |
| C4—C5—C6—C7   | 0.09 (19)    | C15—C16—C17—C18 | -179.14 (12) |
| C5—C6—C7—C8   | -1.9 (2)     | C21—C16—C17—C18 | 2.15 (19)    |
| C6—C7—C8—C9   | 1.13 (19)    | C16—C17—C18—C19 | -0.2 (2)     |
| O1—C4—C9—C8   | 177.40 (11)  | C17—C18—C19—C20 | -1.8 (2)     |
| C5—C4—C9—C8   | -3.31 (18)   | C18—C19—C20—C21 | 1.7 (2)      |
| O1—C4—C9—C10  | -4.59 (17)   | C19—C20—C21—C16 | 0.33 (18)    |
| C5—C4—C9—C10  | 174.71 (11)  | C19—C20—C21—C12 | 179.40 (12)  |
| C7—C8—C9—C4   | 1.42 (18)    | C17—C16—C21—C20 | -2.21 (17)   |
| C7—C8—C9—C10  | -176.57 (12) | C15—C16—C21—C20 | 179.06 (11)  |
| C4—C9—C10—C11 | 11.79 (16)   | C17—C16—C21—C12 | 178.68 (11)  |
| C8—C9—C10—C11 | -170.29 (11) | C15-C16-C21-C12 | -0.06 (17)   |
| N2—C3—C11—C1  | 0.05 (18)    | C13—C12—C21—C20 | -177.38 (11) |
| O1—C3—C11—C1  | 179.80 (10)  | N3—C12—C21—C20  | 0.17 (17)    |
| N2—C3—C11—C10 | -178.78 (11) | C13—C12—C21—C16 | 1.70 (17)    |
| O1—C3—C11—C10 | 0.97 (18)    | N3-C12-C21-C16  | 179.25 (10)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------------------|-------------|--------------|--------------|------------|
| N3—H1N3 <sup>…</sup> N2 <sup>i</sup> | 0.913 (16)  | 2.143 (16)   | 2.9722 (13)  | 150.6 (14) |
| C13—H13A···N2 <sup>ii</sup>          | 0.93        | 2.62         | 3.4791 (16)  | 154        |
| C20—H20A…N3                          | 0.93        | 2.60         | 2.9077 (15)  | 100        |
| C20—H20A…N1 <sup>iii</sup>           | 0.93        | 2.48         | 3.3232 (17)  | 150        |
| C10—H10A…Cg1 <sup>iii</sup>          | 0.97        | 2.76         | 3.5855 (14)  | 143        |
| C10—H10B···Cg2 <sup>ii</sup>         | 0.97        | 2.96         | 3.6792 (14)  | 132        |
| C13—H13A···Cg1 <sup>ii</sup>         | 0.93        | 2.63         | 3.3503 (14)  | 135        |
|                                      |             | 10 1 10      |              |            |

Symmetry codes: (i) *x*+1/2, *y*, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+1/2, *y*-1/2, *z*.





